

PERFIL DE TRABAJO DE PROPUESTA TECNOLÓGICA

Quito – Ecuador 2025

PERFIL DE TRABAJO DE PROPUESTA TECNOLÓGICA

CARRERA: TECNOLOGÍA EN MECÁNICA INDUSTRIAL

TEMA: DISEÑO Y CONSTRUCCIÓN DE UNA ESTRUCTURA METÁLICA PARA UN AULA EN EL TALLER DE MECANIZADO

ELABORADO POR:

JOSSBELL MAYERLY OROSCO HERRERA

SAMY JOEL CEVALLOS CAYO

TUTOR:

ING. ÁNGEL CAILLAGUA

Fecha: (01/01/2025)

Índice

1. (Objetivos	
1.1.	Objetivo General	
1.2.	Objetivos Específicos	
2. A	Antecedentes	3
3. Ju	ustificación	
4. M	Marco Teórico	
5. E	tapas de Desarrollo del Proyecto	10
5.1.	Fase de Planificación	10
5.2.	Fase de Diseño	10
5.3,	Fase de Montaje	10
5.4.	Fase de Inspección y Entrega Final	11
5.5.	Informe Final y Entrega del Proyecto	11
6. Al	Icance	11
7. Cr	ronograma	12
8. Ta	alento humano	12
). Re	ecursos materiales	13
10.	Asignaturas de apoyo	14
11.	Bibliografia	14
Bibliog	rafía	14

Tabla de ilustraciones

Figura 1 Soldadura a	al arco	8
Figura 2 Pintado de	estructuras metálicas	9
Figura 3 Cronogram	na de cada actividad	12
Tabla 1 Métodos de	aplicación	9
Tabla 2 Materiales,	cantidades y precios	13

1. Objetivos

1.1. Objetivo General

Analizar la viabilidad para la construcción de una estructura metálica mediante la elaboración de un diseño estructural, selección de materiales adecuados, y aplicación de técnicas de construcción seguras, para proporcionar un espacio funcional que facilite las actividades educativas y prácticas en el taller de mecanizado, garantizando seguridad y confort para los estudiantes y docentes.

1.2. Objetivos Específicos

- Investigar los parâmetros de diseño mediante la norma vigente para la construcción de estructuras metálicas.
- Diseñar a través del software de estructuras, la estructura metálica del taller de mecanizado con ancho de 6 metros, profundidad de 7 metros y altura de 3 metros para la selección de materiales.
- Elaborar los planos de construcción detallados para la fabricación y montaje de la estructura en sitio, asegurando el cumplimiento de los estándares técnicos, normativas vigentes y requisitos del proyecto.

2. Antecedentes

En la actualidad, el crecimiento de la demanda educativa y la necesidad de espacios adecuados para la formación técnica han impulsado la búsqueda de soluciones constructivas eficientes y sostenibles. En este contexto, la implementación de estructuras metálicas se ha convertido en una alternativa viable debido a su rapidez de instalación, resistencia estructural y facilidad de mantenimiento. El uso de estructuras metálicas en edificaciones educativas ha sido ampliamente estudiado y aplicado en diversas instituciones, destacándose por su capacidad de adaptación a diferentes necesidades espaciales y funcionales. En comparación con sistemas constructivos tradicionales, las estructuras metálicas ofrecen ventajas como la reducción de tiempos de ejecución y la optimización de materiales.

En el ámbito de los talleres de mecanizado ubicado en el Instituto Superior Universitario "Central Técnico" en el área de mecánica industrial, donde se requiere un entorno seguro, resistente y adaptable a las condiciones operativas, la construcción de un aula mediante una estructura metálica representa una solución.

Este tipo de estructuras permiten integrar elementos como paredes livianas, aislamiento térmico y acústico, así como instalaciones eléctricas y de ventilación, garantizando un espacio óptimo para la enseñanza y el desarrollo de actividades prácticas.

Dada la importancia de proporcionar instalaciones adecuadas para la formación técnica en operaciones de mecanizado, este proyecto se enfoca en el diseño y construcción de una estructura metálica para un aula en el taller de mecanizado en el Instituto Superior Universitario "Central Técnico", considerando criterios de seguridad, funcionalidad y eficiencia en el uso de recursos. Para ello, se llevará a cabo un análisis detallado de los requerimientos estructurales, normativas aplicables y procesos de fabricación, con el fin de desarrollar un diseño que cumpla con los estándares de calidad y contribuya al fortalecimiento de la infraestructura.

3. Justificación

La necesidad de contar con el espacio adecuado y funcional para la formación en el taller de mecanizado ha impulsado la búsqueda de soluciones constructivas eficientes, seguras y de rápida implementación el uso de estructuras metálicas se presenta como una alternativa sostenible. Este tipo de construcción permite una ejecución rápida, optimiza el uso de materiales y ofrece ventajas en términos de resistencia estructural y mantenimiento.

Los materiales seleccionados garantizarán resistencia, durabilidad y facilidad de montaje. Se utilizará un software de análisis estructural, como SAP2000, ETABS, STAAD.Pro o Tekla Structures, permiten realizar cálculos precisos de esfuerzos, deformaciones y cargas aplicadas a la estructura. Esto facilita la optimización del diseño, reduciendo el uso innecesario de materiales, el diseño se ajustará la normativa estructural vigente Norma Ecuatoriana de la Construcción (NEC).

Este proyecto es viable desde el punto de vista técnico, económico y académico, la inversión en una estructura metálica representa una solución eficiente y de largo plazo. Al contar con un aula dentro del taller de mecanizado, se optimiza el uso del espacio, se fortalece la formación de los estudiantes y se fomenta un aprendizaje integral que combina teoría y práctica en un mismo entorno.

4. Marco Teórico

"Las estructuras son conjuntos de elementos unidos entre si capaces de soportar las fuerzas que actúan sobre ellas, conservando su forma. Las fuerzas que actúan sobre las estructuras se denominan cargas o acciones" (Ingenieria Civil, 2021).

Soldadura

La soldadura es un proceso utilizado para unir materiales, particularmente metales y sus aleaciones, mediante fusión casi inmediata, seguida de solidificación de los materiales, cuando se exponen a una fuente de calor.

Muy utilizado en la industria en general, el proceso de soldadura sirve para la fabricación y recuperación de piezas, equipos y estructuras metálicas. Su aplicación abarca desde pequeños componentes electrónicos hasta grandes estructuras y equipos.

Figural

Soldadura por arco eléctrico

Nota: Soldadura manual al arco eléctrico de acero al carbono con recubrimiento. Tomado de (Basequim, 2012).

Pintura

Las pinturas y disolventes deben ser guardados en lugares con condiciones específicas, que no permitan la entrada del sol y estén bien ventilados. En el caso de la mezcla se debe seguir rigurosamente las instrucciones descritas por cada material con la finalidad de salvaguardar la condición original del producto y tenga la durabilidad descrita (Inge mecanica, 2021). Se debe realizar una inspección manual con el fin de verificar que todas las piezas estén bien cubiertas y que no tengas impurezas que puedan provocar problemas dentro de la estructura metálica.

Figura 2

Pintado de estructuras metálicas

Nota: Protección y pintado en estructuras. Tomado de (Via Metal, 2021).

Métodos de aplicación

Tabla 1

Métodos de aplicación

Método de aplicación	Imprimación	Capas intermedias	Capas de acabado	Pinturas de gran viscosidad
Brocha	Si	Si	Si	No
Rodillo	No	Si	Si	No
Pistola convencional	No	Si	Si	No
Pistola sin aire	No	Si	Si	No
Pistola en caliente Atomización con	No	Si	Si	Si
pistola de alta presión	No	No	No	Si
Espátula	No	No	No	Si

5. Etapas de Desarrollo del Proyecto

5.1. Fase de Planificación

- Establecer objetivos, dimensiones y requerimientos técnicos de la estructura.
- Determinar materiales y normativas a cumplir.

5.2. Estudio de Viabilidad

- Análisis de costos y presupuesto estimado.
- Evaluación del impacto ambiental y social.

5.3. Elaboración del Cronograma de Trabajo

- Definir plazos de diseño, fabricación y montaje.
- Asignación de tareas y recursos.

5.2. Fase de Diseño

5.2.1. Diseño Estructural

Modelado y simulación en software especializado (ETABS).

5.2.2. Selección de Materiales

- Definir perfiles metálicos.
- Elección de recubrimientos anticorrosivos

5.2.3. Elaboración de Planos de Construcción

- Planos estructurales columnas, vigas y uniones.
- Detalles de soldaduras y atomillados.

5.3. Fase de Montaje

5.3.1. Preparación del Terreno y Cimentación

Instalación de anclajes para la estructura metálica.

5.3.2. Ensamblaje y Elevación de la Estructura

- Montaje de columnas y vigas.
- Alineación y fijación de elementos estructurales.

5.4. Fase de Inspección y Entrega Final

5.4.1. Pruebas y Verificación de Calidad

- Inspección estructural para validar estabilidad y seguridad.
- Revisión de conexiones soldadas y atornilladas.

5.5. Informe Final y Entrega del Proyecto

- Elaboración de un informe técnico con cálculos, planos y pruebas.
- Entrega del aula lista para su uso en el taller de mecanizado.

6. Alcance

El objetivo principal de este proyecto se basa en la implementación de un aula en el área de tornos del taller de mecanizado del ISUCT, se emplearán herramientas de software estructural para garantizar la seguridad, estabilidad y optimización en la selección de materiales, asegurando el cumplimiento de las normativas vigentes en Ecuador.

Este proyecto proporcionará un espacio funcional y seguro para la formación técnica, con un diseño eficiente que garantice su resistencia, durabilidad, esto a largo plazo, se lo realizará con distintos materiales acordes a las necesidades de los estudiantes y docentes del ISUCT, el mismo que ayudará a tener una mayor comodidad y ergonomía para estudiantes y docentes.

7. Cronograma

Figura 3

Cronograma de cada actividad

	CRONOGRAMA DE ACT	IVIDADES		2024		20	25
Nº	ACTIVIDADES	Fecha de incio	Fecha final	NOVIEMBRE	DICIEMBRE	ENERO	FEBRERO
1	Investigary determinar la necesidad	8/11/2024	8/11/2024				
2	Reuniserse para seleccionar el tema	15/11/2024	15/11/2024				
3	Analizar la viabilidad	20/11/2024	20/11/2024				
4	Elaborar los planos de construcción	30/11/2024	5/12/2024				
5	Seleccionar los materiales	7/12/2024	7/12/2024				
6	Realizar diferentes cotizaciones	9/12/2024	15/12/2024				
7	Comprar el material para empezar la construcción	20/12/2024	20/12/2024				
8	Pintar el material antes de la construcción	22/12/2024	5/1/2025				
9	Empezar con el montaje y anclaje de la estructura metálica	10/1/2025	5/1/2025				
0	Elaborar el escrito sobre el proyecto	5/1/2025	14/2/2025				

Nota: El gráfico indica las fechas puntuales que se realizó el proyecto.

8. Talento humano

Participantes	Rol a desempeñar en el proyecto	Carrera	
Srta. Jossbell Orosco	Estudiante	Tecnología en Mecánica Industrial	
Sr. Samy Cevallos	Estudiante	Tecnologia en Mecánica Industrial	
Ing. Ángel Caillagua	Tutor	Tecnologia en Mecánica Industrial	

9. Recursos materiales

El proyecto se realizó con el objetivo de tener un lugar seguro, sostenible y confortable para recibir clases proporcionando un espacio funcional para facilitar las actividades educativas en el taller de mecanizado.

Para realizar la construcción de la estructura metálica, se requieren diversos recursos proyectados para la construcción de la estructura, que pueden agruparse en materiales, herramientas, equipos, mano de obra y normativas.

Tabla 2

Materiales, cantidades y precios

N.ª	Cantidad	Descripción	Precio
1	3	Tubo cuadrado de 100mm x 100mm x 3mm	\$169.59
2	12	Canal C de 150mm x 50mm x 3 mm	\$344.28
3	10	Correas de 100mm x 50mm x 2mm	\$172.30
4	2	Angulo de 40mm x 3mm	\$20.30
5	6	Placas de 250mm x 200mm x 10mm	\$36.00
6	20kg	Electrodos 6011	\$50.40
7	4 galones	Anticorrosivo gris	\$51.62
8	5 galones	Thifter	\$47.73
9	1	Disco de corte para trozadora 1/4"	\$3.66
10	4	Disco de corte de 8"	\$4.41
11	2	Disco de pulir de 8"	\$3.66

10. Asignaturas de apoyo

- Dibujo mecánico
- Soldadura
- Diseño asistido por computadora
- Estructuras metálicas
- Proyectos

11. Bibliografía

- Basequim. (8 de Diciembre de 2012). Instituto nacional de seguridad y salud en el trabajo.

 Obtenido de insst: https://www.insst.es/stp/basequim/007-soldadura-al-arco-electricocon-electrodo-metalico-revestido-exposicion-a-humos-metalicos-2012
- Inge mecanica . (martes de Junio de 2021). Tratamiento y pinturas. Obtenido de Inge mecanicatutorial N°20: https://ingemecanica.com/tutorialsemanal/tutorialn20.html
- Ingenieria Civil. (Jueves de Diciembre de 2021). Colegio de Ingenieros Técnicos de Obras Públicas. Obtenido de Ingenieros Civiles: http://ingenieros-

civiles.es/actualidad/1/1075/ingenieria-civil-para-dummies-las-estructuras-y-su-

clasificacion/#:~:text=Definici%C3%B3n%20de%20estructura,se%20denominan%20car gas%20o%20acciones.

Via Metal. (6 de Agosto de 2021). Metal. Obtenido de Via Metal:

https://viametal.com.pe/limpieza/

REALIZADO POR:	
Jossbell Mayerly Orosco Herrera	JAMADO PO
ESTUDIANTE	FIRMA

POR:	
Samy Joel Cevallos Cayo	Suytracil 8
ESTUDIANTE	FIRMA

REVISADO POR:	
ING. Ángel Caillagua	himed
TUTOR DEL PROYECTO	FIRMA

APROBADO POR:	
MGS. Iván Choca	Tw Grant Janter
COORDINADOR DE CARRERA MECANICA INDUISTRIAL	FIRMA COLOREST THE

CARRERA: Mecanica Industrial.

FECHA DE PRESENTACIÓN:		
02 2025 DÍA MES AÑO		
APELLIDOS Y NOMBRES DEL EGE	RESADO:	
Orosoo Henero Jossbed Hay	edy	
Obsto Henera Jossber Ha APELLIDOS NOMBRES	yerly.	
TITULO DE LA PROPUESTA TECN	OLÓGICA:	***********************
Diseño y Construcción de ma	estruction met	ratra cara
un aula en el taller de meca		an ann feanannin
PLANTEAMIENTO DEL PROBLEMA:	CUMPLE	NO CUMPLE
OBSERVACIÓN Y DESCRIPCIÓN		
 ANÁLISIS 		
• ANÁLISIS		
• ANÁLISIS		

JUSTIFICACIÓN:	CUMPLE	NO CUMPLE
IMPORTANCIA Y ACTUALIDAD		
BENEFICIARIOS		
FACTIBILIDAD		
ALCANCE:	CUMPLE	NO CUMPLE
ESTA DEFINIDO		
MARCO TEÓRICO: FUNDAMENTACIÓN TEÓRICA DESCRI	BE LA PROPUI	ESTA TECNOLÓGIC.
FUNDAMENTACIÓN TEÓRICA DESCRI	BE LA PROPUI	NO
FUNDAMENTACIÓN TEÓRICA DESCRI		
FUNDAMENTACIÓN TEÓRICA DESCRI	SI	NO
MARCO TEORICO: FUNDAMENTACIÓN TEÓRICA DESCRI REALIZAR TEMARIO TENTATIVO: ANTECEDENTES, FUNDAMENTACIÓN TI	CUMPLE	NO

 DELIMITACIÓN. 	
 PROBLEMÁTICA 	
FORMULACIÓN PR	EGUNTAS/AFIRMACIÓN
PLANTEAMIENTO GENERALES:	DE OBJETIVOS:
REFLEJA LOS CA	AMBIOS QUE SE ESPERA LOGRAR CON LA
INTERVENCION DE LA PR	OPUESTA TECNOLÓGICA SI NO
ESPECÍFICOS:	
GUARDA RELACIÓN	N CON EL OBJETIVO GENERAL PLANTEADO
	SI NO

ANÁLISIS Y SOLUCIONES PARA LA PRO	DPUESTA TECNO	LÓGICA
APLICACIÓN DE SOLUCIONES		
EVALUACIÓN DE LAS SOLUCIONES		
MATERIALES V MÉTODOS UTIL OBSERVACIONES:— Luny lo. Lun A		del Jena
	ol	
CRONOGRAMA: OBSERVACIONES:	le .	
FUENTES DE INFORMACIÓN: Lucycle		

RECURSOS:	CUMPLE	NO CUMPLE
HUMANOS		
ECONÓMICOS		
MATERIALES		
PERFIL DE PROPUESTA T	ECNOLÓGICA	
Aceptado		
Negado		
el diseño de propuesta tecnológica por	las siguientes razones:	
a)		

b)	
ESTU	DIO REALIZADO POR EL ASESOR:
NOMBRE Y	FIRMA DEL ASESOR: 19 Angel Culloque Costro.
/O DÍA	02 2025 MES AÑO
FECH	IA DE ENTREGA DE INFORME