

ANÁLISIS DE LA GESTIÓN DE ENFRIAMIENTO DE LA BATERÍA DE HV DEL VEHÍCULO AUDI Q5 A DISTINTOS MODOS DE FUNCIONAMIENTO, ELÉCTRICO, MCI Y BOOSTER.

TECNOLOGÍA SUPERIOR EN MECÁNICA AUTOMOTRIZ

ALEMAN TEJADA JOSEPH ABRAHAM

ANGULO NAVARRETE ISIDRO

ING. AVILA SALAZAR EDUARDO FRANCISCO

MAYO - OCTUBRE

2022-JULIO

SU CENTRAL TÉCNICO INSTITUTO SUPERIOR UNIVERSITARIO

INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO VERSIÓN:

MACROPROCESO: 01 FORMACIÓN

PROCESO: 03 TITULACIÓN

ELABORACIÓN: ÚLTIMA REVISIÓN vi,20/04/2018

mi,21/04/2021

Código: FOR.FO31.02 FORMATO

01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN

Página 2 de 30

2.1

PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN

1. ÍNDICE

1.	ÍNDICE	2
2.	TITULO DEL PROYECTO DE INVESTIGACIÓN.	5
3.	PLANTEAMIENTO DEL PROBLEMA	5
4.	PLANTEAMIENTO DE OBJETIVOS:	5
4.1.	GENERAL	5
4.2.	ESPECÍFICOS	5
5.	JUSTIFICACIÓN	6
6.	ALCANCE	6
7.	MARCO TEÓRICO	7
7.1.	Partes del sistema de enfriamiento de la batería HV	7
7.2.	Características del sistema de enfriamiento de las baterías HV	7
7.3.	Sistema de enfriamiento del vehículo híbrido Q5	8
7.4.	Modos de funcionamiento del vehículo Audi Q5.	9
	7.4.1. Funcionamiento 100% eléctrico	9
	7.4.2. Funcionamiento del MCI	10
	7.4.3. Funcionamiento en modo BOOST	10
8.	TIPO DE INVESTIGACIÓN PLANTEADA	11
8.1.	Fuentes primarias.	11
8.2.	Fuentes secundarias.	11
9.	MÉTODOS DE INVESTIGACIÓN UTILIZADOS	11
9.1.	Meto de investigación bibliográfico	11
9.2.	Método analítico	11
10.	CRONOGRAMA	12
11.	FUENTES DE INFORMACIÓN	13

ISU CENTRAL TÉCNICO INSTITUTO SUPERIOR UNIVERSITARIO

INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO VERSIÓN:

MACROPROCESO: 01 FORMACIÓN

PROCESO: 03 TITULACIÓN

ELABORACIÓN:

vi,20/04/2018 ÚLTIMA REVISIÓN mi,21/04/2021

Código: FOR.FO31.02 01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN

Página 3 de 30

2.1

FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN

12.	RI	ECUR	SO	14
12.1		Tale	nto humano	14
12.2		Mat	eriales	14
13.	M	IARC	O TEÓRICO	16
13.1	.•	Jera	rquización de variables	16
13.2		Part	es del sistema de enfriamiento de la batería HV	17
13.3		Cara	acterísticas del sistema de enfriamiento de las baterías HV	18
13.4		Siste	ema de enfriamiento del vehículo híbrido Q5	19
13.5	•	Mod	los de funcionamiento del vehículo Audi Q5	20
	13.5	.1.	Funcionamiento 100% eléctrico	20
	13.5	.2.	Funcionamiento del MCI	21
	13.5	.3.	Funcionamiento en modo BOOST	21
14.	M	letod	ología de la investigación	23
14.1	·•	Enfo	oque de la investigación	23
	14.1	.1.	Enfoque cuantitativo	23
	14.1	.2.	Enfoque cualitativo	23
	14.1	.3.	Enfoque mixto	23
14.2		Tipo	s de investigación	24
	14.2	.1.	Investigación Experimental	24
14.3		Nive	eles de investigación	25
	14.3	.1.	Meto o nivel de investigación bibliográfico.	25
	14.3	.2.	Método o nivel analítico	25
14.4	٠.	Pobl	ación o muestra	25
	14.4	.1.	Población	25
	14.4	.2.	Muestra	25
	14.4	.3.	Fórmula para calcular la muestra	25

INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO MACROPROCESO: 01 FORMACIÓN PROCESO: 03 TITULACIÓN Código: FOR.FO31.02 O1 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN Página 4 de 30

	14.4.4.	Determinación de la muestra	26
14.5	5. Téc	nicas de recolección de la información	27
	14.5.1.	Operacionalización de variables	27
	14.5.2.	Ítems o preguntas	27
	14.5.3.	Tabulación de datos	29
15.	Conclu	usiones	30
16	Recon	nendaciones	30

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Pág	na 5 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

2. TITULO DEL PROYECTO DE INVESTIGACIÓN.

Análisis de la gestión de enfriamiento de la batería de HV del vehículo Audi Q5 a distintos modos de funcionamiento, eléctrico, MCI y Booster.

3. PLANTEAMIENTO DEL PROBLEMA

Las baterías HV de los vehículos híbridos, están expuestas a una serie de ciclos de carga y descarga, por lo tanto, la temperatura de la batería aumenta, disminuyendo así su capacidad energética y su degradación será más rápida. Cuando la tempera desciende mucho, por lo cual la batería HV se encuentra propensa a perder su eficiencia, esto también sucede al elevarse la temperatura de la misma asciende excesivamente, gracias a estos cambios de temperaturas que sufre la batería de alto voltaje su vida útil se acorta.

El problema más importante a resolver es, ¿Cómo determinar qué la batería (High Voltage) no sufra un desgaste prematuro por los distintos modos de funcionamiento, eléctrico, MCI y booster?

4. PLANTEAMIENTO DE OBJETIVOS:

4.1. GENERAL

Analizar el sistema de enfriamiento de la batería (High Voltage) del vehículo Audi Q5, mediante la indagación de información en fuentes bibliográficas confiables, manuales técnicos de la marca Audi, paper's, para comparar el funcionamiento del sistema de enfriamiento en los diferentes modos de prueba, eléctrico, MCI y booster.

4.2. ESPECÍFICOS

- Identificar como es el funcionamiento de las distintas formas de enfriamiento de la batería HV del vehículo Audi Q5 mediante sus distintos modos de operación y comprender cada uno de ellos con la ayuda de revisión bibliográfica.
- Demostrar las diferencias que tiene cada modo de funcionamiento eléctrico, MCI y booster del vehículo hibrido Audi Q5 para conocer la variación de temperatura que existe entre estos modos, mediante pruebas dinámicas realizas al vehículo.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 6 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

 Definir como cada uno de los distintos modos de funcionamiento del vehículo Audi
 Q5 afectan directamente a la batería de HV analizando el desgaste que sufre al momento de realizar las pruebas al vehículo.

5. JUSTIFICACIÓN

En el siguiente proyecto de investigación, se basa en el análisis del sistema de enfriamiento de la batería HV del vehículo híbrido Audi Q5, mediante la práctica realizada en las instalaciones del ISUCT, de esta manera atendiendo las necesidades que presentan los estudiantes de la carrera Tecnología en Mecánica Automotriz, puesto que se tiene escasa información sobre el tema, la batería HV es la parte fundamental de todos los sistemas, puesto que sin ella ningún componente o sistema podría funcionar, la batería que tiene el Audi Q5 es una batería HV de iones de Litio por eso necesitamos refrigerarla adecuadamente, para poder extender su vida útil.

Al cargar una batería, los procesos químicos que tienen lugar durante la carga se invierten. El calor se libera durante este termo proceso dinámico, haciendo que la batería se caliente. Como el alto voltaje de la batería del Audi Q5 híbrido está sujeto a continuos ciclos de carga y descarga, cantidades considerables de calor pueden construirse aquí. Esto provoca no sólo en el potencial envejecimiento de la batería, sino también, en particular, a una mayor resistencia eléctrica en los conductores, con el resultado de que la energía eléctrica no se convierte en trabajo más bien se disipa como calor. Por esta razón, la batería de alto voltaje tiene un módulo de refrigeración, para disipar todo el calor que se pueda, con el fin de mantener a la batería en una temperatura adecuada de funcionamiento, esto se lo controla con los 8 sensores de temperatura que presenta este sistema de enfriamiento de la batería HV.

6. ALCANCE

Con el tema que se ha planteado se busca conocer cuál es el funcionamiento del sistema de enfriamiento de la batería de HV del vehículo Audi Q5 que se encuentra en el ISUCT en los distintos modos de conducción que dispone el vehículo, para conocer la operación de este y entender como es la gestión a distintas formas de trabajo. Realizando una comparativa se observará cómo se comporta la temperatura de la batería de HV y como los sistemas de enfriamiento de la batería ayudan a mantener una temperatura normal de trabajo y esto hará que la vida útil de la batería de HV se prolongue por más tiempo

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Pág	na 7 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

7. MARCO TEÓRICO

7.1. Partes del sistema de enfriamiento de la batería HV.

Sin la batería ninguno de los sistemas podría funcionar, La mayoría de las baterías de los sistemas híbridos son de Iones de Litio y Níquel-metal, es sabido que las baterías deben funcionar en un rango de temperatura determinado, Jair (2018) afirma que "A una temperatura mayor que los 40° C, disminuye la vida útil de la batería y menor a los -10° C el grado de eficiencia decrece" p.26, para lo cual se tiene las siguientes partes para poder refrigerar la batería HV:

- Sensor de temperatura
- Tomas de aire
- Módulos
- Ventilador
- Cañerías

Ilustración 1

Partes del sistema de enfriamiento de las baterías HV.

Nota: En la ilustración 1 se verifica los componentes de la refrigeración de las baterías HV. (Andrés, 2018)

7.2. Características del sistema de enfriamiento de las baterías HV.

Las baterías de alta tensión proveen un voltaje de 201.6 voltios, este voltaje es utilizado en los motores trifásicos del vehículo y demás elementos del vehículo, este voltaje requiere ser regenerado y monitoreado constantemente por la ECU de la batería, adicionalmente, tómese en cuenta que el control de la temperatura no exceda la temperatura ideal de trabajo o la que el fabricante dicta en el manual.

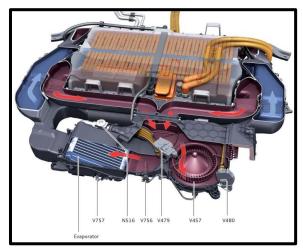
ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Pági	na 8 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Ilustración 2

Características del sistema de enfriamiento.

Nota: En la ilustración 2 se verifica las características de la refrigeración de las baterías HV. (Geovanny, 2018)

7.3. Sistema de enfriamiento del vehículo híbrido Q5.


En los ciclos de trabajo de carga y descarga de la batería HV, se produce en ella una gran cantidad de calor, el cual se lo debe disipar para que el rendimiento de la batería sea el óptimo. "Si la temperatura no se mantiene correcta, va a provocar que la vida útil de la batería se vea acortada e incluso llegar a provocar que quede inservible" (APARICIO, 2020).

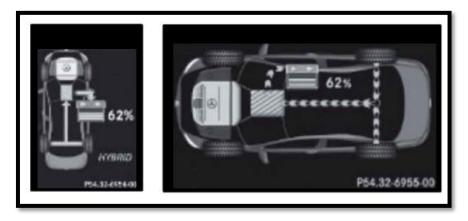
Las distintas formas de enfriamiento de la batería HV son: Por medio de una turbina la cual recircula el aire, permitiendo ingresar aire frio y extraer el caliente de la batería. Por medio de un evaporador, el cual enfriara aún más el aire del medio ambiente permitiendo una mejor refrigeración de la batería, el ultimo es por medio del compresor del A/C, el cual enfría totalmente el aire cuando se exige demasiado a la batería, tal y como se verifica en la ilustración 3.

Ilustración 3

Sistema de enfriamiento del Audi Q5

٨	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 9 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Nota: En la figura 3 se verifica las partes del sistema de enfriamiento del vehículo Audi Q5.


7.4. Modos de funcionamiento del vehículo Audi Q5.

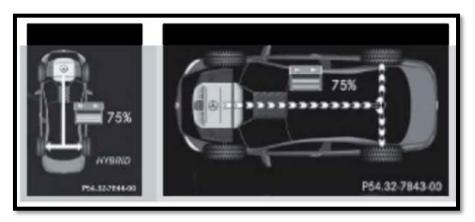
7.4.1. Funcionamiento 100% eléctrico.

En este modo de funcionamiento de 100% eléctrico el MG2 es quien brinda la propulsión al vehículo, gracias a la energía entregada por la batería de Hv, Ros Marín & Barrera Doblado, (2017) aseguran que "El sistema funciona como generador en descensos o frenado y como motor cuando da propulsión al vehículo. El hibrido convierte la energía eléctrica y la almacena en las baterías de alta tensión". (pág.52), tal y como se observa en la ilustración 4.

Ilustración 4

Modo 100% eléctrico del vehículo Audi Q5.

Nota: En la figura 4 se puede observar cómo es el funcionamiento 100% eléctrico.

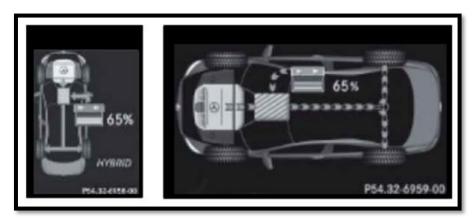

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	a 10 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

7.4.2. Funcionamiento del MCI.

En este caso el MCI es el que propulsa al vehículo, "En condiciones normales: el motor de combustión interna da tracción al vehículo" (Ros Marín & Barrera Doblado, 2017), tal y como se verifica en la ilustración 5.

Ilustración 5

Conducción normal (MCI)


Nota: En la figura se puede observar cómo es el funcionamiento en conducción normal (MCI).

7.4.3. Funcionamiento en modo BOOST.

En el modo boost el MCI y MG2 ayudan para la propulsión del vehículo, esto nos indica que supero la velocidad de 120 km/h, Ros Marín & Barrera Doblado, (2017) aseguran que "El sistema eléctrico ayuda al motor de combustión interna al arranque y cuando se acelera". (pág.52), como se verifica en la ilustración 6.

Ilustración 6

Modo Boost del vehículo Audi Q5.

Nota: En la figura se puede observar cómo es el funcionamiento en modo booster.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	a 11 de 30
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

8. TIPO DE INVESTIGACIÓN PLANTEADA

La presente investigación se lo realiza mediante el estudio bibliográfico, teórico y práctico, puesto que toda la información se obtuvo de los manuales técnicos del vehículo Audi Q5 y de la práctica desarrolla, mediante el análisis del sistema de enfriamiento de las baterías HV. Para ello nos ayudaran las fuentes tanto primarias como secundarias.

8.1. Fuentes primarias.

Se obtendrá la información en base de los datos que brinda el fabricante algunos de ellos son: Manuales de fabricante, fichas técnicas.

8.2. Fuentes secundarias.

Se hará uso de fuentes de datos secundarios como lo son artículos científicos, investigaciones, libros con editoriales internacionales y nacionales, tesis y revistas científicas, para obtener información relacionada con el sistema de enfriamiento del vehículo Audi Q5.

9. MÉTODOS DE INVESTIGACIÓN UTILIZADOS

9.1. Meto de investigación bibliográfico.

Este método de investigación es el conjunto de técnicas que se emplean para la recolección, localización e identificación de la información más relevantes de los documentos obtenidos en fuentes bibliográficas relacionadas con el tema del enfriamiento de las baterías HV.

9.2. Método analítico

La investigación comprende este método debido a que será necesario realizar una revisión sistemática como lo son artículos científicos, investigaciones, manuales técnicos de Audi, como medio de recolección de información.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	DE Página 12 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

10. CRONOGRAMA

Ilustración 8

Cronograma de actividades.

	6			INICIO DE	FIN DE	1200000000000			tri 1, 20			tri 2
	•	THE RESERVE OF THE PERSON NAMED IN	PERFIL DE INVESTIGACIÓN	ACTIVIDAD ▼	ACTIVIDAD ▼	Duración	¥ :	abr	may	jun	jul	aç
	1	X?	Inscripción en el proceso de titulación por proyecto de investigación en el sistema de GIA	dom, 22/05/22	sáb 25/06/22	6 días				L		
	2	X?	Envió de solicitudes de inscripción al proceso de titulación, y aprobación por parte de vicerectorado.	lun, 30/05/22	mar 31/05/22	2 días						
	3	X?	Informe de estudiantes inscritos en el proyecto de investigación tecnológico	mié, 21/06/22	mar 21/06/22	1 días				E		
	4	n	Revisión y aprobación de los temas presentados por los estudiantes y designación de tutores	mié, 27/07/22	jue 28/07/22	1 días						L
	5	n	Elaboración del perfil de titulación por proyecto de investigación	jue, 28/07/22	vie 29/07/22	1 días						I
	6	A?	Presentación del perfil aprobado, de forma presencial	lun; 01/08/22	mar 02/08/22	1 días						L
TIMINA DE CIVINA	7	办	Entrega de informe de lista de estudiantes con perfiles de aprobación aprobados por parte de los coordinadores de carrera y los tribunales									
	8	*?	Elaboración del artículo científico									
5	9	*?	Sustentación teórica y marco metodológico									
	10	x	Resultado de la investigación y conclusión									
	11	n	Informe de los documentos de parte de los tutores, hacia los coordinadores									
	12	X?	Revisión de expedientes de los estudiantes									
	13	*	Entrega de borradores de proyecto de investigación									
	14	n	Designación y entrega de artículos científicos por parte de coordinadores de titulación									
	15	A	Informe de tribunal designado, hacia coordinadores de carrera									

Nota: En la figura se puede ver el cronograma de actividades.

d		INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
	CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
	RIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: F	FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	na 13 de 30
FORMATO		PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

11. FUENTES DE INFORMACIÓN

- Andrés, S. G. (13 de marzo de 2018). ANÁLISIS DEL COMPORTAMIENTO DE BATERÍAS USADAS EN VEHÍCULOS HÍBRIDOS DURANTE EL PROCESO DE RECUPERACIÓN". Obtenido de ANÁLISIS DEL COMPORTAMIENTO DE BATERÍAS USADAS EN VEHÍCULOS HÍBRIDOS DURANTE EL PROCESO DE RECUPERACIÓN":

 https://dspace.ups.edu.ec/bitstream/123456789/16285/1/UPS-CT007928.pdf
- APARICIO, J. P. (31 de marzo de 2020). ¿Cómo es la refrigeración de las baterías en un coche híbrido? Obtenido de ¿Cómo es la refrigeración de las baterías en un coche híbrido?: https://www.autofacil.es/coches-electricos-e-hibridos/refrigeracion-baterias-coche-hibrido/190158.html
- Audi AG. (2018). Taller Manual Audi Q5 2008. En A. AG, Taller Manual Audi Q5 2008 (pág. 11). Ingolstadt.
- GARZÓN, E. S. (12 de marzo de 2017). SISTEMA ELÉCTRICO Y ELECTRÓNICO. Obtenido de SISTEMA ELÉCTRICO Y ELECTRÓNICO:

 http://repositorio.ute.edu.ec/bitstream/123456789/4837/1/59283 1.pdf
- Geovanny, S. L. (13 de marzo de 2018). VEHÍCULOS HÍBRIDOS DURANTE EL PROCESO DE RECUPERACIÓN. Obtenido de VEHÍCULOS HÍBRIDOS DURANTE EL PROCESO DE RECUPERACIÓN: https://dspace.ups.edu.ec/bitstream/123456789/16285/1/UPS-CT007928.pdf
- Montecelos, J. T. (2019). Vehículos eléctricos . En J. T. Montecelos, Vehículos eléctricos (pág. 42). Madrid : Paraninfo .
- OCHOA, J. A. (14 de enero de 2017). DISEÑO Y CONSTRUCCIÓN DEL SISTEMA DE

 REFRIGERACIÓN PARA LA BATERÍA DE UN VEHÍCULO FORMULA SAE ELÉCTRICO.

 Obtenido de DISEÑO Y CONSTRUCCIÓN DEL SISTEMA DE REFRIGERACIÓN PARA LA

 BATERÍA DE UN VEHÍCULO FORMULA SAE ELÉCTRICO.:

 https://dspace.ups.edu.ec/bitstream/123456789/13641/1/UPS-CT006932.pdf

b	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	na 14 de 30
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Ros Marín, J. A., & Barrera Doblado , Ó. (2017). Vehícilos eléctricos e híbrios . En J. A. Ros Marín, & Ó. Barrera Doblado, Vehícilos eléctricos e híbrios (pág. 52). Madrid : Paraninfo .

TOBAR, H. H. (23 de junio de 2017). ESTUDIO DE LA INCIDENCIA DE LA CARGA EN LA ECUALIZACIÓN DE LOS PACKS DE BATERÍAS DE ALTA TENSIÓN . Obtenido de ESTUDIO DE LA INCIDENCIA DE LA CARGA EN LA ECUALIZACIÓN DE LOS PACKS DE BATERÍAS DE ALTA TENSIÓN: https://bibdigital.epn.edu.ec/bitstream/15000/18813/1/CD-8200.pdf

VÉLEZ, L. A. (24 de abril de 2018). PROPULSIÓN TÉRMICO – ELECTRÓNICO. Obtenido de PROPULSIÓN TÉRMICO – ELECTRÓNICO: https://dspace.uazuay.edu.ec/bitstream/datos/2225/1/09687.pdf

12. RECURSO

12.1. Talento humano

En la siguiente se determina el talento humano necesario para la investigación.

Tabla 1Participantes en el proyecto de investigación.

Nº	Participantes	Rol que desempeñar en el proyecto	Carrera
1	Angulo Navarrete Isidro Gabriel	Investigar	Tecnología Superior en Mecánica Automotriz
2	Aleman Tejada Joseph Abraham	Investigar	Tecnología Superior en Mecánica Automotriz
3	Ing. Ávila Salazar Eduardo Francisco	Tutor	Tecnología Superior en Mecánica Automotriz

Nota. En la presente tabla se observará las personas inmersas en el presente proyecto. (Propio, 2022)

12.2. Materiales

En la tabla 2 se verificar los materiales que serán necesarios para la investigación.

Tabla 2

Recursos materiales requeridos

<u> </u>	Danish make distance was side.
item	Recursos materiales requeridos

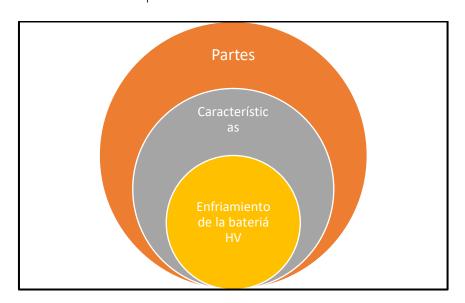
ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págin	a 15 de 30
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

- 1 Laboratorio donde se encuentra le vehículo Audi Q5, en las instalaciones del ISUCT.
- 2 Empresa AXXIS
- 3 Manuales, Fichas técnicas, diagramas
- 4 Computadora

Nota. En la tabla 2 se aprecia los recursos materiales que se requieren para la formación del proyecto. (Propio, **2022**)

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págin	a 16 de 30
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

CAPÍTULO II

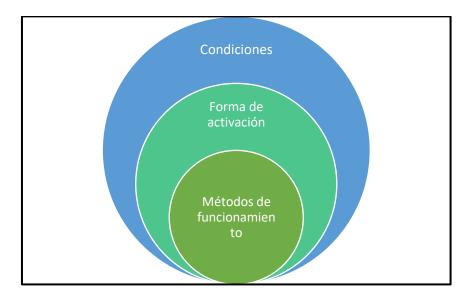

13. MARCO TEÓRICO

13.1. Jerarquización de variables

Variable independiente

Es el elemento, fenómeno, situación, etc. que explica, condiciona, determina o causa la presencia, cantidad o calidad de otro elemento, fenómeno, situación. Villasís (2018) afirma que "Es una variable antecedente, es decir la que, por lo menos en cuanto influencia, es anterior a la dependiente. Es aquella a partir de la cual se predice otra y sus variaciones: Si ocurre A, entonces ocurre B; si varia A, entonces variara B" (p.83), en la ilustración de determina la jerarquización de la variable independiente.

Ilustración 9Jerarquización de la variable independiente.


Nota: En la ilustración 9 se verifica la jerarquización de la variable independiente de la investigación.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págin	a 17 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

• Variable dependiente.

Esta variable se la denomina también como las causas que vamos a tener en el tema de la investigación, el fenómeno, situación, condición, determinado o causado por la variable independiente, Villasís (2018) afirma que "Es la variable dependiente porque depende de lo que suceda en la variable independiente" (p.83), como se verifica en la ilustración número 2, en la cual está estructurada la variable dependiente.

Ilustración 10Jerarquización de la variable dependiente.

Nota: En la ilustración 10 se verifica la jerarquización de la variable dependiente de la investigación.

13.2. Partes del sistema de enfriamiento de la batería HV.

Sin la batería ninguno de los sistemas podría funcionar, La mayoría de las baterías de los sistemas híbridos son de lones de Litio y Níquel-metal, es sabido que las baterías deben funcionar en un rango de temperatura determinado, Jair (2018) afirma que "A una temperatura mayor que


ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	na 18 de 30
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

los 40° C, disminuye la vida útil de la batería y menor a los -10° C el grado de eficiencia decrece" (p.26), para lo cual se tiene las siguientes partes para poder refrigerar la batería HV:

- Sensor de temperatura
- Tomas de aire
- Módulos
- Ventilador
- Cañerías

Ilustración 11

Partes del sistema de enfriamiento de las baterías HV.

Nota: En la ilustración 11 se verifica los componentes de la refrigeración de las baterías HV.

Andrés (2018)

13.3. Características del sistema de enfriamiento de las baterías HV.

Las baterías de alta tensión proveen un voltaje de 201.6 voltios, este voltaje es utilizado en los motores trifásicos del vehículo y demás elementos del vehículo, este voltaje requiere ser regenerado y monitoreado constantemente por la ECU de la batería, adicionalmente, tómese en cuenta que el control de la temperatura no exceda la temperatura ideal de trabajo o la que el fabricante dicta en el manual.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	a 19 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

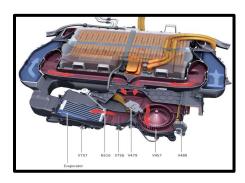
Ilustración 12

Características del sistema de enfriamiento.

Nota: En la ilustración 12 se verifica las características de la refrigeración de las baterías HV. Geovanny (2018)

13.4. Sistema de enfriamiento del vehículo híbrido Q5.

En los ciclos de trabajo de carga y descarga de la batería HV, se produce en ella una gran cantidad de calor, el cual se lo debe disipar para que el rendimiento de la batería sea el óptimo. "Si la temperatura no se mantiene correcta, va a provocar que la vida útil de la batería se vea acortada e incluso llegar a provocar que quede inservible" APARICIO (2020).


Las distintas formas de enfriamiento de la batería HV son: Por medio de una turbina la cual recircula el aire, permitiendo ingresar aire frio y extraer el caliente de la batería.

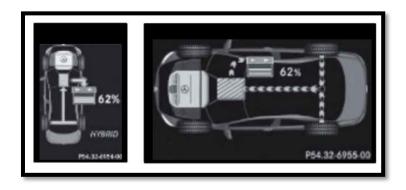
Por medio de un evaporador, el cual enfriara aún más el aire del medio ambiente permitiendo una mejor refrigeración de la batería, el ultimo es por medio del compresor del A/C, el cual enfría totalmente el aire cuando se exige demasiado a la batería, tal y como se verifica en la ilustración 13.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	na 20 de 30 .
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Ilustración 13

Sistema de enfriamiento del Audi Q5

Nota: En la figura 13 se verifica las partes del sistema de enfriamiento del vehículo Audi Q5.


13.5. Modos de funcionamiento del vehículo Audi Q5.

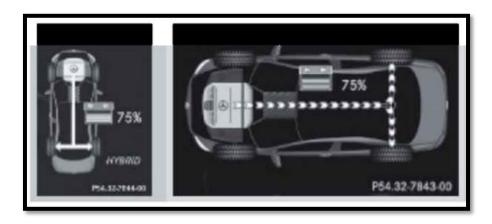
13.5.1. Funcionamiento 100% eléctrico.

En este modo de funcionamiento de 100% eléctrico el MG2 es quien brinda la propulsión al vehículo, gracias a la energía entregada por la batería de Hv, Ros Marín & Barrera Doblado, (2017) aseguran que "El sistema funciona como generador en descensos o frenado y como motor cuando da propulsión al vehículo. El hibrido convierte la energía eléctrica y la almacena en las baterías de alta tensión". (pág.52), tal y como se observa en la ilustración 14.

Ilustración 14

Modo 100% eléctrico del vehículo Audi Q5.

Nota: En la figura 14 se puede observar cómo es el funcionamiento 100% eléctrico.


(/)		INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
	ENTRAL ÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR	-011100	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FO I	R.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Págir	a 21 de 30
FORMATO		PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	·

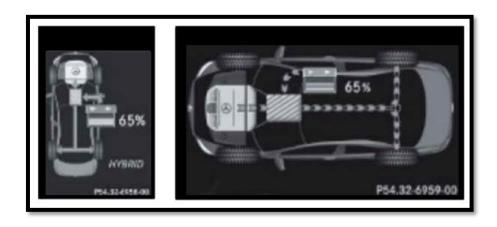
13.5.2. Funcionamiento del MCI.

En este caso el MCI es el que propulsa al vehículo, "En condiciones normales: el motor de combustión interna da tracción al vehículo" (Ros Marín & Barrera Doblado , 2017), tal y como se verifica en la ilustración 15.

Ilustración 15

Conducción normal (MCI)

Nota: En la figura se puede observar cómo es el funcionamiento en conducción normal (MCI).


13.5.3. Funcionamiento en modo BOOST.

En el modo boost el MCI y MG2 ayudan para la propulsión del vehículo, esto nos indica que supero la velocidad de 120 km/h, Ros Marín & Barrera Doblado, (2017) aseguran que "El sistema eléctrico ayuda al motor de combustión interna al arranque y cuando se acelera". (pág.52), como se verifica en la ilustración 16.

ISU CENTRAL TÉCNICO		INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
		MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
		PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código:	FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 22 de 30	
FORMATO		PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Ilustración 16

Modo Boost del vehículo Audi Q5.

Nota: En la figura se puede observar cómo es el funcionamiento en modo booster.

٨	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 23 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

CAPÍTULO III

14. Metodología de la investigación.

14.1. Enfoque de la investigación.

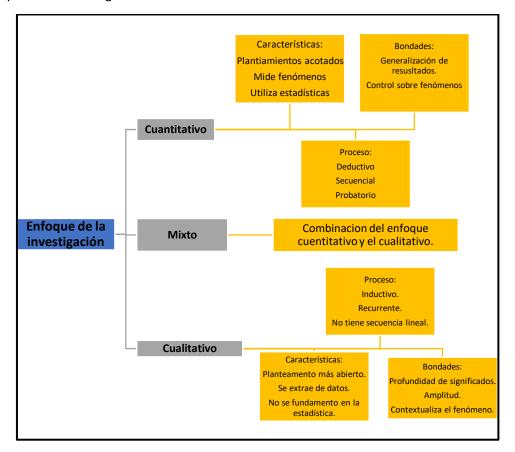
El enfoque de la investigación es un proceso que se lo denomina sistemático, disciplinado, controlado y se encuentra directamente relacionado a los métodos de investigación, que son tres: enfoque cuantitativo (Valores), enfoque cualitativo (Cualidades o características) y enfoque mixto, el cual es la unión de los dos anteriores (cualitativo y cuantitativo). Collado (2017)

14.1.1. Enfoque cuantitativo

Este método se refiere a la recopilación de datos para probar hipótesis con base en medidas numéricas, ya que involucra el conteo numérico y métodos matemáticos, lo que a su vez implica realizar análisis estadísticos para determinar el comportamiento y probar teorías.

14.1.2. Enfoque cualitativo.

También conocido como investigación naturalista, fenomenológica, interpretativa o etnográfica, este enfoque examina la realidad en un entorno natural mediante la obtención e interpretación de fenómenos según las personas involucradas.


14.1.3. Enfoque mixto.

Este método es el proceso de recopilar, analizar y vincular datos cuantitativos y cualitativos en un estudio o serie de estudios para poder responder a un método, esta combinación es útil para obtener información para que la triangulación como método sea posible. y obtener una comprensión e interpretación más amplias del objeto de estudio.

En la ilustración 1 de determina mejor los diferentes enfoques que se presentan.

à	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 24 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN		

Ilustración 17Enfoques de la investigación.

Nota: En la ilustración 17 se verifican los diferentes enfoques que pueden tener la investigación.

En la presente investigación se emplea un enfoque "mixto "puesto que en los resultados de la investigación se va a tener valores cuantitativos y numeritos.

14.2. Tipos de investigación.

14.2.1. Investigación Experimental.

En este tipo de investigación el investigador desea comprobar los efectos de una intervención específica, en este caso el investigador tiene un papel activo, "puesto que lleva a cabo una intervención. En los estudios experimentales el investigador manipula las condiciones de la investigación". Hidalgo (2022), con lo cual en la investigación de van a manipular las varibles que se definieron.

٨	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 25 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

14.3. Niveles de investigación

14.3.1. Meto o nivel de investigación bibliográfico.

Este método de investigación es el conjunto de técnicas que se emplean para la recolección, localización e identificación de la información más relevantes de los documentos obtenidos en fuentes bibliográficas relacionadas con el tema del enfriamiento de las baterías HV. (Maya, 20187, págs. 12-16)

14.3.2. Método o nivel analítico

La investigación comprende este método debido a que será necesario realizar una revisión sistemática como lo son artículos científicos, investigaciones, manuales técnicos de Audi, como medio de recolección de información. (Maya, 20187, págs. 12-16)

14.4. Población o muestra.

14.4.1. Población

- Población infinita: no se conoce el tamaño y no se tiene la posibilidad de contar o construir un marco muestra (listado en el que encontramos las unidades elementales que componen la población)
- Población Finita: Se conoce el tamaño, a veces son tan grandes que se comportan como infinitas. Existe un marco muestra donde hallar las unidades de análisis (marcos muéstrales = listas, mapas, documentos)

14.4.2. Muestra

Es cualquier subconjunto del universo que se está tomando, esto quiere decir que del universo se va a tomar una parte de él.

14.4.3. Fórmula para calcular la muestra

Esta fórmula nos va permitir calcular nuestra muestra o definir mejor a las personas que va dirigido la investigación.

INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO VERSIÓN: 2.1 CENTRAL ELABORACIÓN: MACROPROCESO: 01 FORMACIÓN vi,20/04/2018 PROCESO: 03 TITULACIÓN ÚLTIMA REVISIÓN mi,21/04/2021 01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE FOR.FO31.02 Página 26 de 30 INVESTIGACIÓN PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN **FORMATO**

Ecuación 1

Fórmula para determinar la muestra.

$$n = \frac{z^2.P.q.N}{e^2(N-1) + z^2.p.q}$$

Donde:

- n= muestra
- N= población
- Z= nivel de confianza
- e= error maestral
- p= población a favor
- q= población en contra

14.4.4. Determinación de la muestra

En el siguiente ejerció se detalle o determina la muestra que se va a emplear para la investigación.

$$n = \frac{z^2. P. q. N}{e^2(N-1) + z^2. p. q}$$

$$n = \frac{90^2.90.10.50}{10(50 - 1) + 90^2.90.10}$$

$$n = \frac{364500000}{7290490}$$

$$n = 49,99$$

$$n = 50 \text{ (Todos)}$$

Se determinó que la muestra se debe realizar a todas las personas de nuestra población.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	PROCESO: 03 TITULACIÓN	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 27 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

14.5. Técnicas de recolección de la información.

Los métodos de recolección de datos son herramientas o técnicas para obtener datos cuantitativos o cualitativos. Los métodos Santos (2021) "afirma que es recopilación de datos incluyen encuestas, pruebas, entrevistas, diarios, etc. Dependiendo de los métodos y datos a obtener, se utilizará uno de los métodos de recolección de datos mencionados anteriormente" (p.3).

14.5.1. Operacionalización de variables

Esta parte de la investigación nos da valides y confianza en nuestra investigación, en la siguiente tabla se determina la Operacionalización de variables.

Tabla 3Operacionalización de variables

Objetivo de la investigación	Conceptualización principal	Dimensión	Indicadores
Analizar el sistema de enfriamiento	Variable independiente.	Diseño del sistema	Modos de
de la batería HV del vehículo Audi Q5,	Gestión de enfriamiento de	de enfriamiento de	enfriamiento
a través de la indagación de	enfriamiento de las baterías	la batería HV.	de la batería
información en fuentes bibliográficas	HV.		HV.
confiables, manuales técnicos de la			
marca Audi, paper's, para comparar el	Variable dependiente.	Forma de utilizar	Activación de
funcionamiento del sistema de	Modos de funcionamiento	cada uno de los	cada modo de
enfriamiento en los diferentes modos	del vehículo Audi Q5.	nodos de	funcionamiento.
de prueba, eléctrico, MCI y booster.		funcionamiento del	
		vehículo.	

Nota: En la siguiente tabla se verifican las variables que se presentan en la investigación.

14.5.2. Ítems o preguntas

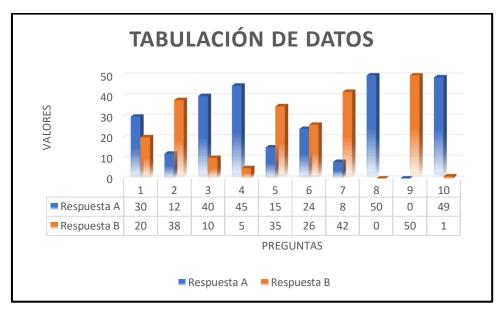
A continuación, se presenta las preguntas realizadas en la encuesta, con el fin de tener datos que aporten a la investigación.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 28 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	

Pregunta 1: ¿Cuántos modos de enfriamiento conoce?

a) 3
b) 5
Pregunta 2: ¿Qué modo de enfriamiento es más eficiente?
a) Recirculación
b) A/C
Pregunta 3: ¿Todos los vehículos híbridos tienen distintos modos de enfriamiento?
a) Si
b) No
Pregunta 4: ¿Los modos se accionan de forma automática?
a) Si
b) No
Pregunta 5: ¿El sistema de enfriamiento del Audi es automático?
a) Si
b) No
Pregunta 6: ¿El modo booster es el accionamiento del ME y el MCI?
a) Si
b) No
Pregunta 7: ¿El voltaje del motor del compresor del A/C es una corriente alterna?
a) Si
b) No
Pregunta 8: ¿En qué modo se gasta más energía?
a) Booster

à	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
ISU CENTRAL TÉCNICO	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 29 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO D	E INVESTIGACIÓN	


- b) ME
- Pregunta 9: ¿Cundo se activa el modo booster?
 - a) Cuando teneos bajas velocidades
 - b) Cuando tenemos altas velocidades.
- Pregunta 10: ¿Se puede activar al mismo tiempo el ME y el MCI?
 - a) Si
 - b) No

14.5.3. Tabulación de datos

Después de haber hecho la encuesta se proceda a tabular los datos dando como resulto la gigante tabulación, que se presenta en la ilustración 18:

Ilustración 28

Tabulación de datos.

Nota: En la ilustración 18 se verifican la tabulación de los datos obtenidos en la encuesta.

ð	INSTITUTO SUPERIOR UNIVERSITARIO CENTRAL TÉCNICO	VERSIÓN:	2.1
CENTRAL	MACROPROCESO: 01 FORMACIÓN	ELABORACIÓN:	vi,20/04/2018
INSTITUTO SUPERIOR UNIVERSITARIO	Proceso: 03 titulación	ÚLTIMA REVISIÓN	mi,21/04/2021
Código: FOR.FO31.02	01 TRABAJO DE TITULACIÓN PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN	Página 30 de 30	
FORMATO	PERFIL DE PROYECTO TECNOLÓGICO / PROYECTO DE INVESTIGACIÓN		

15. Conclusiones

- El sistema de enfriamiento de las baterías HV, es fundamental para que estas no pierdan sus propiedades debido a sus altas temperaturas, llegando estas a 55° C, acortando la vida útil de la batería y reduciendo la efectividad de la misma.
- El modo Booster se activa cuando el vehículo se encuentra en velocidades altas cuando el
 operario exige más al vehículo, por lo cual el motor eléctrico no puede aportar por completo
 a la propulsión del mismo, realizando la combinación entre los motores ME y MCI.

16. Recomendaciones

- Todos los sistemas de la refrigeración del vehículo deben ser verificadas en el manual del fabricante.
- Cuando se esté realizando las comprobaciones de la refrigeración de las baterías HV, es importante tener los EPP.
- Siempre estar pendiente a la desactivación del alto voltaje antes de realizar cualquier trabajo o mantenimiento en la batería HV.